The Multiplication Rule for Counting

Detailed Examples

Introduction

Using the Multiplication Rule for Counting can look difficult at first. The key is to follow the following steps.

- 1. Determine how many decisions must be made for each step of the problem. Write a slot for each decision.
- 2. Fill in the number of possibilities for each decision in the corresponding slot. Work on each decision one at a time.
- 3. Multiply the numbers in each slot. The product is your answer.

These problems can have large numbers for answers.

Examples

Example 7.2

The University Combinatorics Club has 31 members: 8 seniors, 7 juniors, 5 sophomores, and 11 firstyears. How many possible 4-person committees can be formed by selecting 1 member from each class?

Step Work Write four slots, one each for: seniors, juniors, sophomores, and first-years.

Seniors Juniors Sophomores First-Jears

Access for free at https://openstax.org/books/contemporary-mathematics/pages/1-introduction

Work

Step Fill in the slots: 8 for the seniors, 7 for the juniors, 5 for the sophomores, and 11 for the first-years.

8 7 5 11 Seniors Juniors Sophomores First-Jears

Multiply the numbers in each slot.

8 x 7 x 5 x 1/ Seniors Juniors Sophomores First-Years = 3.080

The answer is 3,080 ways to pick people for the committee.

Example 7.3

The standard license plates for vehicles in a certain state consist of 6 characters: 3 letters followed by 3 digits. There are 26 letters in the alphabet and 10 digits (0 through 9) to choose from. How many license plates can be made using this format?

StepWorkWrite six slots: three for the
three letters and three for the
numbers.

Fill in the slots. The first
three slots are 26, which is
the number of letters. The last
three slots are 10, which is
the number of digits.
$$\frac{26}{1^{5t}} = \frac{26}{2^{nd}} = \frac{26}{3^{rd}} = \frac{10}{1^{5t}} = \frac{10}{2^{nd}} = \frac{10}{3^{rd}} =$$

Multiply the numbers in each slot.

$$\frac{26 \times 26 \times 26 \times 10 \times 10 \times 10}{2^{nd}} \frac{10}{3^{nd}} \frac{10}{1^{st}} \frac{10}{2^{nd}} \frac{10}{3^{nd}} \frac{10}{3^{nd}}$$

$$= 17,576,000$$

The number of possible license plates is 17,576,000. For a large state, having this many possibilities is good so you will not run out of plates.